Holistic Testing, Quality Engineering, and Scrum
(Expansion of the SGEP)

Lisa Crispin

2026-01-18T09:00:00Z

Collected Resources for Scrum Guide Expansion Pack

This document is a collection of independent works. Each section retains its original
license or copyright status, as indicated. Please refer to each section for specific usage
rights and requirements.

License/Copyright: CC BY-NC-ND 4.0
Note: This section is included in its original, unaltered form with permission under the
terms of the CC BY-NC-ND 4.0 license. No changes have been made.

Cross-functional Scrum Teams collaborate closely with customers, users, Stakehold-
ers, and Supporters to deliver products that their customers value. The Supporters and
customers expect quality to be built into the products. The entire Scrum Team is re-
sponsible for quality and testing. Testing activities occur throughout the whole infinite
loop of software development.

Consider testing from a holistic point of view. There are so many types of testing activ-
ities. The Holistic Testing Model provides a visual thinking tool to help Scrum Teams
plan a comprehensive testing strategy that includes the entire development life cycle.
Quality engineers, known by a variety of other job titles, are, as Product Developers,
part of the Scrum Team and partner with the Product Owner and operations to embed
quality throughout the life cycle.

The Holistic Testing Model

The Holistic Testing Model reflects the need for the whole Scrum Team to take own-
ership of quality and testing, engaging in testing activities around the whole infinite
loop of software development. On the left side of the loop, these activities aim to pre-
vent problems by identifying risks, prioritizing quality attributes [1][2] (also referred to
as non-functional requirements, or NFRs) such as security and performance, surfacing
hidden assumptions, and including all necessary capabilities. Testing extends around
the right side of the loop, in both pre-production and production environments.


https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Holistic Testing Model, copyright 2025, Janet Gregory and Lisa Crispin
Figure 1: Holistic Testing Model, copyright 2025, Janet Gregory and Lisa Crispin
Holistic Testing Model with Example Testing Activities

Figure 2: Holistic Testing Model with Example Testing Activities

There are no handoffs between Scrum Teams in modern software testing. The pauses
in the model indicate a time for the Scrum Team to pause and reflect on what they’ve
done so far and whether they are ready to continue to the next stage. There are no rules
about how long the Scrum Team should spend in each stage when implementing a new
change to a product. They may get to a stage and realize they have to circle back to a
previous stage where they missed something.

The next figure shows the same Holistic Testing Model with example testing activities.
These are only examples, not necessarily best practices. Different Scrum Teams may
do different activities, at different times, depending on their context. The key is to
have effective conversations about testing and quality, with the whole team and Sup-
porters, throughout the development cycle. Continuous improvement through small
experiments and short feedback loops is the focus. Each Scrum Team needs to plan a
testing strategy that includes all the necessary activities at the right time - throughout
the development cycle.

Let’s walk through the different stages of the model, which are basically the stages of
the modern software development life cycle. Software development is an infinite loop,
and new changes often begin with discovery, so we will start there.

Testing Early - Discover and Plan

Frequent delivery of small, sustainable changes is the key for software teams to con-
tinually deliver new value to customers. As Google’s DORA research has shown over
several years:

“Working in small batches” is a long-time DORA Capability, which refers to the degree
to which teams break down their changes into manageable units that can be quickly
tested and evaluated. ™ [3]

Teams need those quick feedback loops to build quality in. That means preventing bugs
by brainstorming about the value to customers and risks as soon as we start working on
a new change.

Teams do lots of testing in these stages — testing ideas, understanding user needs, look-
ing for risks, and thinking about how to mitigate them. Together with Supporters, Stake-
holders, and customers, they discuss the user needs. They ask questions like “What
problem is this solving for the customer? What is the main value this capability should
provide?”

Google’s 2024 DORA research report [4] found that “alignment between what Product


https://dora.dev/research/2024/dora-report/

“Brisk de-risking” board example for an equine motel company application

Figure 3: “Brisk de-risking” board example for an equine motel company application

Developers build and what users need allows employees and organizations to thrive.”
[3]. Their research showed that prioritizing the end user helps development teams and
their organizations perform better. Investing time in structured conversations to plan
new features pays off by making sure the right capabilities are delivered on the first try.

They use visual frameworks such as risk storming [5] to identify potential risks and
brainstorm ways to mitigate them. They might choose to mitigate them through au-
tomated tests or by monitoring and observability [6]. For example, teams use Open
Telemetry [7] to ensure they capture all data and events needed to understand any un-
expected problems [8].

Prioritizing the top risks and quality attributes helps the Scrum Team plan how to miti-
gate them. They can make sure they build in the appropriate levels of attributes, such as
performance, availability, and security, that the business and customers require. This
enables the creation of appropriate acceptance and outcome criteria for each new fea-
ture.

Here’s an example of a risk brainstorming exercise done by members of the delivery
Scrum Team and Stakeholders whose company has a “horse and donkey motels” web-
based application. They considered risks around a new product backlog item (in story
format) to add the capability for customers to cancel their booking for their equine and
people accommodation.

These planning discussions often show that a proposed feature is too big and needs to
be broken down into smaller components. The goal of this stage is to break each new
feature into small, testable product backlog items.

Seek to Understand

Once the Scrum Team, in collaboration with Stakeholders and Supporters, has created
those small, testable product backlog itemsstories, it’s time to dig into the details and
get a shared understanding of each onestory. In Refinement and Sprint Planning, Prod-
uct Developers and Stakeholders discuss the goal, the business rules, and the concrete
example for each business rule.

To work as effectively as possible, they use visual frameworks like example mapping
[9]. These structured frameworks keep conversations on track and help everyone re-
frame the problem and see what emerges. The Scrum Team members also identify the
data and events to capture through logging and instrumentation in the code, so they can
monitor and understand what happens in production after deployment.

These structured conversations let the Scrum Team plan how to mitigate the top priority
risks for each story. They can create acceptance and outcome criteria that ensure they
deliver what customers and Stakeholders value most.


https://charity.wtf/2020/03/03/observability-is-a-many-splendored-thing/
https://opentelemetry.io/
https://opentelemetry.io/
https://cucumber.io/blog/bdd/example-mapping-introduction/

Sample example map

Figure 4: Sample example map

Here’s a sample example map from a Scrum Team working on a web-based app that
allows company employees to schedule Scrum Team meetings. This map was created
during a short session before the official sprint planning meeting. These sessions are
sometimes known as Power of Three or Three Amigos, where people with product, de-
velopment, and quality domain skills collaborate [10]. In this case, the Product Owner,
the quality engineer, and two programmers discuss each product backlog item that the
Scrum Team would include in the subsequent Sprint Planning.

The yellow card is the product backlog item. Blue cards contain business rules, and
green cards provide examples that illustrate the desired behavior for the business rules.
The red cards have questions that need to be answered before the Sprint Planning.

Testing Activities While We Build

Once everyone is on the same page as to how the new change should behave, the Scrum
Team starts building ... coding, automating, testing — not necessarily in that order. Op-
timally, they use good practices like test-driven development (TDD) [13] to get well-
designed, operable, testable code.

Janet Gregory often says:

Throw away the ‘then’ in ‘code, then test’. Replace it with ‘and’. And maybe, also
reverse the order to say, ‘test AND code’. Put the test first. [11]

In the build stage, team members guide development with business-facing examples,
using techniques like behavior-driven development [12]. These examples are turned
into tests, which focus on quality and value from a business perspective. The whole
Scrum Team can participate in these activities, making sure they build the right thing,
in the right way.

The Scrum Team automates tests as appropriate, at the appropriate levels — unit, API,
workflow. The whole Scrum Team and possibly the Stakeholders are involved. As with
earlier stages, they collaborate to prevent customer pain and to embed telemetry into
the product to capture the data that will let us learn from production.

Deploying and releasing

When new changes are deployed to production-like test environments, Scrum Team
members can do more feature-level testing. The continuous integration pipelines run
automated regression tests. It’s a key time to test for the high-priority quality attributes,
also known as non-functional requirements, such as security, accessibility, and perfor-
mance.

It’s also an opportunity to check that new instrumentation is capturing the right data, and
new or updated dashboards and alerts are accurate. This will help measure whether the


https://martinfowler.com/bliki/TestDrivenDevelopment.html
https://www.manning.com/books/effective-behavior-driven-development

Scrum Team achieves elements of its Definition of Outcome Done. They also ensure
they are ready to support the new changes in production, so we can test logging and
dashboards.

A fast and reliable deployment pipeline is a necessity. It provides fast feedback, espe-
cially for Scrum Teams working towards continuous delivery. Once a feature becomes
usable, Scrum Teams can conduct human-centric activities such as exploratory and ac-
cessibility testing.

Modern Scrum Teams use release strategies to enable deploying changes to production
without releasing them to users. Examples of popular release strategies include:

* Release feature toggles / flags [14]: adding booleans to the code so the Scrum
Team can opt to show the new change to some or all external customers, or keep
it hidden. Similar toggles, called “experiment toggles”, are often used for A/B
testing.

Blue-Green deployment [15]: Two identical production environments, one live
and accessible to customers, one idle and only accessible internally, referred to as
“blue” and “green”. The team can deploy to the idle environment, run additional
tests, and switch customer traffic to the one with the new deployment.

Rolling deployment [16]: Deployment of a new release candidate is staggered
to a subset of servers, one or a few at a time. If any problems are detected, the
deployment can be halted and rolled back.

The Scrum Team, sometimes including programmers, testers/quality engineers, oper-
ations specialists, and others, discusses which release strategies would work best in
their context. They can experiment with different approaches, define a hypothesis, and
decide how they will measure success.

Depending on their context, the Scrum Team can safely do testing in production that
couldn’t be done effectively in test environments. We can gradually roll out changes to
more customers while closely monitoring for any issues.

Observing and learning

Once features are in production, Scrum Teams can observe customer actions and reac-
tions. The telemetry, based on instrumentation planned in the early stages, is used here.
What the team learns from observability and analytics helps the organization prioritize
the next changes. Often, they will observe something completely unexpected, like cus-
tomers using a new feature in an unintended way. That’s an opportunity to try some
new experiments in subsequent development cycles.

Together with the Guiding Coalition, we can design experiments to improve our process
and product. We move on to the next iteration through the cycle, starting over with the
next discovery stage.


https://martinfowler.com/articles/feature-toggles.html
https://octopus.com/devops/software-deployments/blue-green-deployment/
https://octopus.com/devops/software-deployments/rolling-deployment/

Summing up

Testing activities on the left side of the Holistic Testing loop aim to prevent defects in the
code that could cost the business and its customers time and money. This is the quickest
feedback, and it happens when team members with diverse skills and experience work
together with the Supporters.

This collaboration continues on the right side of the loop, finding defects, missed ca-
pabilities, and deficiencies in quality attributes as quickly as possible. Learning how
customers use the new changes is slower feedback; it’s more expensive. If the team
has built in the right telemetry and infrastructure, they can respond quickly to problems.
Everyone on a Scrum Team can contribute to every stage of the Holistic Testing cycle.

The Quality Engineer Competency

Everyone on a Scrum Team should have a testing mindset and engage in testing activ-
ities. They build quality in. Each Scrum Team member has their own deep skills - not
everyone starts out with a testing mindset and testing skills. This diversity of skill sets,
experience, and background helps the Scrum Team perform better.

A software quality engineer (QE) partners with product, development, and operations
specialists to embed quality throughout the entire life cycle. Ideally, each Scrum Team
has QE skills. In many organizations, a senior QE may support multiple Scrum Teams
in a consulting role to build up QE skills. The QE helps all Scrum Team members learn
skills to improve quality throughout the development cycle.

Quality engineers, who may also be called quality advocates, testers, or other labels, col-
laborate across disciplines to help manage risk, facilitate discussion, and align on quality
goals. They are strategic contributors who improve processes and help the Scrum Team
build process and product quality.

Key activities of a quality engineer in a Scrum Team could include:

* Design test frameworks and tools

* Track metrics and drive continuous improvement

« Participate in and even facilitate retrospectives to find ways to prevent problems
from recurring

+ Experiment with new practices

* Coach Scrum Teams as they look for ways to improve product and process quality

* Integrate feedback from customers

Quality is the responsibility of everyone on the Scrum Team, as well as the Stakeholders
and Supporters. The Quality Engineer enables the Scrum Team to deliver reliable, valu-
able software. And, every Scrum Team member actively engages in testing activities
that help build quality in.

References
[1] Gregory, J. and Crisipin L. (2010) ATDD vs. BDD vs. Specification by Example vs



... 31 August. Available at: https://janetgregory.ca/atdd-vs-bdd-vs-specification-by-
example-vs/ (Accessed: 19 December 2025)

[2] Gregory, J. & Crispin, L., 2025. Quality Attributes — those pesky ‘“non-functional”
requirements. Agile Testing Fellowship, 17 March. Available at: https://agiletesting
fellow.com/blog/post/quality-attributes-those-pesky-non-functional-requirements
(Accessed 29 December 2025)

[3] Forsgren, N., Humble, J., Kim, G. & the DORA Team, 2025. DORA 2025 State
of Al-Assisted Software Development Report. Google Cloud. Available at: https:
//cloud.google.com/devops/state-of-devops (Accessed 29 December 2025)

[4] DORA, 2024. DORA Report 2024. Google Cloud. Available at: https://dora.dev/r
esearch/2024/dora-report/ (Accessed 29 December 2025)

[5] RiskStorming, n.d. RiskStorming. Available at: https://riskstormingonline.com/
(Accessed 29 December 2025)

[6] Majors, C., 2020. Observability is a many-splendored thing. Charity.wtf, 3 March.
Available at: https://charity.wtf/2020/03/03/observability-is-a-many-splendored-
thing/ (Accessed 29 December 2025)

[7] OpenTelemetry, n.d. OpenTelemetry. Cloud Native Computing Foundation. Avail-
able at: https://opentelemetry.io/ (Accessed 29 December 2025)

[8] Sridharan, C., 2017. Monitoring and observability. Medium, 5 September. Avail-
able at: https://copyconstruct.medium.com/monitoring-and-observability-8417d195
2elc (Accessed 29 December 2025)

[9] Cucumber Ltd., n.d. Example Mapping: an introduction. Cucumber Blog. Avail-
able at: https://cucumber.io/blog/bdd/example-mapping-introduction/ (Accessed 29
December 2025)

[10] Wynne, M. & Hellesay, A., 2012. The Cucumber Book: Behaviour-Driven Devel-
opment for Testers and Developers. Dallas, TX: Pragmatic Bookshelf.

[11] Gregory, J. & Crispin, L., 2015. Holistic Testing: Weave Quality Into Your Product.
Upper Saddle River, NJ: Addison-Wesley Professional.

[12] Smart, J.F., Molina, J. & Farcic, A., 2014. Effective Behavior-Driven Develop-
ment. Shelter Island, NY: Manning Publications. Available at: https://www.manning.
com/books/effective-behavior-driven-development (Accessed 29 December 2025)

[13] Fowler, M., 2014. Test-Driven Development. MartinFowler.com. Available at:
https://martinfowler.com/bliki/TestDrivenDevelopment.html (Accessed 29 December
2025)

[14] Fowler, M., 2017. Feature Toggles (aka Feature Flags). MartinFowler.com. Avail-
able at: https://martinfowler.com/articles/feature-toggles.html (Accessed 29 December
2025)

[15] Octopus Deploy, n.d. Blue-green deployment. Available at: https://octopus.com/
devops/software-deployments/blue-green-deployment/ (Accessed 29 December 2025)


https://janetgregory.ca/atdd-vs-bdd-vs-specification-by-example-vs/
https://janetgregory.ca/atdd-vs-bdd-vs-specification-by-example-vs/
https://agiletestingfellow.com/blog/post/quality-attributes-those-pesky-non-functional-requirements
https://agiletestingfellow.com/blog/post/quality-attributes-those-pesky-non-functional-requirements
https://cloud.google.com/devops/state-of-devops
https://cloud.google.com/devops/state-of-devops
https://dora.dev/research/2024/dora-report/
https://dora.dev/research/2024/dora-report/
https://riskstormingonline.com/
https://charity.wtf/2020/03/03/observability-is-a-many-splendored-thing/
https://charity.wtf/2020/03/03/observability-is-a-many-splendored-thing/
https://opentelemetry.io/
https://copyconstruct.medium.com/monitoring-and-observability-8417d1952e1c
https://copyconstruct.medium.com/monitoring-and-observability-8417d1952e1c
https://cucumber.io/blog/bdd/example-mapping-introduction/
https://www.manning.com/books/effective-behavior-driven-development
https://www.manning.com/books/effective-behavior-driven-development
https://martinfowler.com/bliki/TestDrivenDevelopment.html
https://martinfowler.com/articles/feature-toggles.html
https://octopus.com/devops/software-deployments/blue-green-deployment/
https://octopus.com/devops/software-deployments/blue-green-deployment/

[16] Octopus Deploy, n.d. Rolling deployment. Available at: https://octopus.com/de
vops/software-deployments/rolling-deployment/ (Accessed 29 December 2025)


https://octopus.com/devops/software-deployments/rolling-deployment/
https://octopus.com/devops/software-deployments/rolling-deployment/

	The Holistic Testing Model
	Testing Early - Discover and Plan
	Seek to Understand
	Testing Activities While We Build
	Deploying and releasing
	Observing and learning
	Summing up
	The Quality Engineer Competency
	References

