Software Engineering Practices for Scrum
(Expansion of the SGEP)

Dave Farley

2026-01-18T09:00:00Z

Collected Resources for Scrum Guide Expansion Pack

This document is a collection of independent works. Each section retains its original
license or copyright status, as indicated. Please refer to each section for specific usage
rights and requirements.

License/Copyright: CC BY-NC-ND 4.0

Note: This section is included in its original, unaltered form with permission under the
terms of the CC BY-NC-ND 4.0 license. No changes have been made.

Scrum is a framework for developing and sustaining complex products. It provides the
structure within which Scrum Teams can deliver value iteratively and incrementally.
Scrum does not specify how Scrum Teams should build products or which techniques
they must use. However, Scrum requires Scrum Teams to execute this iterative, incre-
mental work effectively.

If the way work is organized does not support step-by-step learning, experimentation,
and adaptation, many of Scrum’s advantages disappear. That is why Scrum Teams and
organizations must deliberately organize their work to encourage exploration, feedback,
and continuous adjustment to succeed with Scrum. The quality and sustainability of
outcomes depend on the engineering practices that Scrum Teams apply.

This document outlines essential engineering practices that enhance Scrum’s effective-
ness in software engineering for digital products (SGEP/ProductThinking).

Purpose

The purpose of engineering practices within Scrum is to ensure that each Increment is in
a usable state that enables learning and insight. What “high quality” means can change
depending on the stage of development and the level of uncertainty in the product’s
environment. Engineering practices should therefore support releasing when it makes
sense, learning quickly from real use, and helping the people doing the work sustain
the ability to deliver reliable outcomes again and again over time.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Without a disciplined engineering approach, Scrum devolves into short cycles of poorly
integrated work, which accumulate technical debt and reduce agility.

The Case for “Engineering”

In simple terms, supported by user access and their feedback, modern engineering is the
practical side of empirical process control. It is about making things work in the real
world. In many fields, “engineering” basically means “the stuff that works reliably.”

The purpose of engineering is not to find the one perfect solution. Instead, it helps
rule out bad ideas and narrow the options to better ones. These options can then be
compared to determine the best fit.

Engineering uses principles and practices that help people avoid common mistakes and
weak solutions. Examples of this way of thinking include building in safety margins
and designing systems that fail safely rather than causing damage.

Engineering cannot guarantee success. However, it produces far better results than not
using engineering at all. When this mindset is applied continuously, it helps Scrum
Teams learn, improve, and gradually move toward better outcomes, which is exactly
what makes inspect & adapt possible.

So what are the software equivalent of “engineering” principles that can guide people
towards those better outcomes?

Principles

Perhaps the most foundational principle in empirical process control, science, and engi-
neering is the idea that one begins by assuming that one’s guesses are probably wrong.

Science is a satisfactory philosophy of ignorance: Because we have the doubt, we
then propose looking in new directions for new ideas.
— Richard Feynman

This is also fundamentally the philosophy behind agile development. One is permitted
the freedom to make mistakes and organize the work so mistakes are detected as soon
as possible. This idea encourages people to make progress in small, safe, verifiable
steps, so they can check for mistakes after each step and correct any problems, whatever
their nature. This idea is at the core of any sound engineering approach to software
development and shapes how people think about and approach the work as a whole.

It is important, however, to avoid becoming overly focused on the process alone. The
ultimate goal of software development is to create value or utility for users. To succeed
as an engineering discipline, the organization of work must reliably guide people toward
outcomes that are more likely to deliver that value or utility.

So while customer value is the real goal, engineering practices in the context of Scrum
share these common principles that will enable people to achieve the real goals of solv-
ing customer problems and discovering new opportunities:

1. Enable Adaptiveness: enable rapid, safe change without compromising quality.
2. Accelerate Feedback: reduce the time to discover errors or validate value.

3. Increase Transparency: provide a clear picture of product quality and opera-
tional state.

4. Support Sustainability: maintain a consistent (but sustainable) pace without
compromising product quality.

Enabling Adaptiveness through Technical Practices

These principles are deeply interlinked, and at their heart lie the fundamentals that make
Scrum work: the ability to inspect & adapt to changing circumstances.

If the goal, from a technical perspective, is to support this ability to inspect & adapt,
then clearly one should be able to detect and highlight (inspect) problems easily and
quickly, and be able to change (adapt) the code to meet new circumstances, whatever
they may be. To do this, people need to efficiently identify problems and, when they
do, make changes to resolve them safely and easily.

An adaptive approach to Modern Software Engineering' is then built on two founda-
tional assumptions:

1. that the discipline of software development is fundamentally a process of explo-
ration and discovery, and

2. that the best way to facilitate such a process is by Optimizing for Learning and
sustaining the ability to learn by Optimizing to Manage Complexity.

Core Practices

Optimizing for Learning We, as individuals, teams, and as organisations, need to
be good at learning at multiple levels. Guesses about the nature of the products we
create will likely be wrong, and there will be misunderstandings about what users want
or need. Even if not, once users see the system, their wants and needs will change.

Effective teams and organisations need to learn continuously from people using their
systems; solutions may not work as expected, product ideas may not work, so some
ideas and theories will need to be established and tested to see whether they address
users’ needs and goals.

The result of all this uncertainty is that effective software development needs to be
flexible and adaptive. There are five core practices at the heart of an adaptive approach
to engineering that enable the kind of learning and exploration needed to build and adapt
systems that better meet the needs of users and other stakeholders.

Farley, D. (2021) Modern Software Engineering: Doing What Works to Build Better Software Faster.
Addison-Wesley Professional. Available at: https://www.amazon.com/Modern-Software- Engineering-
Discipline-Development/dp/0137314914/ (Accessed: 22 November 2025).

https://www.amazon.com/Modern-Software-Engineering-Discipline-Development/dp/0137314914/
https://www.amazon.com/Modern-Software-Engineering-Discipline-Development/dp/0137314914/
https://www.amazon.com/Modern-Software-Engineering-Discipline-Development/dp/0137314914/

They are:

1. Work Iteratively - Work in small steps and evaluate the effectiveness of
decisions and choices after each small step.

2. Optimize for Fast Feedback - Collect high-quality, accurate feedback on
decisions and deliver it to the person best positioned to act on it.

3. Work Incrementally - Complex systems never spring fully formed from the
mind of some creator; they are the products of an incremental accretion of
understanding and features, built over time. One organizes to support that
process of accretion, maintaining and enhancing the ability to change the system
quickly and easily.

4. Adopt an Experimental Approach - Treat every change to process, product,
or technology as an experiment. Work to control the variables to attempt to
understand the results. Treat failure as an opportunity to learn.

5. Be Pragmatic - Empirical Learning - Engineering is not the same as pure sci-
ence or mathematics, it is not seeking perfection, it aims to solve practical prob-
lems with high-quality solutions. One should learn from the reality of the system,
as well as from the theories of how it does, or should, work.

Optimizing to Manage Complexity Software development operates in inherently
complex environments, built on deep stacks of abstractions and technologies, where
even simple systems are only a few steps away from significant challenges. This com-
plexity is not inherently negative; it also creates hidden opportunities, technical ad-
vances, and new ways users derive value—but when left unmanaged, it becomes a pri-
mary reason organisations struggle to sustain effective ways of working. Humans have
evolved effective strategies for coping with complexity, such as compartmentalisation,
and successful approaches to software development deliberately apply such strategies
to steer complexity toward learning, value, and better outcomes.

In software, this is vital to avoid the disastrous end of so many failed systems - the
‘Big Ball of Mud,’ legacy systems that everyone is too afraid to change. The goal of
effective software development is fundamentally different, and to support a sustainable
approach, people need to retain the ability to modify the software. This is not about
predicting the future of all possible uses, but about compartmentalizing the system so
that one can change one part or facet without those changes forcing change elsewhere.

Of course, that also means that one should be able to detect when changes are unsafe,
which is firmly in the realm of “optimizing for learning”. Managing the system’s com-
plexity is about making it easy and safe to change. Here are five practices to inform
every design decision and help people build software that is easier to change.

1. Modularity - the degree to which a system s components may be separated and

recombined, often with the benefit of flexibility and variety in use.*

2. Cohesion - the degree to which the elements inside a module belong together?>

3. Separation of Concerns - a design principle for separating a computer program
into distinct sections such that each section addresses a separate concern.

4. Abstraction - the process of removing physical, spatial, or temporal details
or attributes in the study of objects or systems to focus attention on details of
greater importance. 5

5. Managed Coupling - managing the degree of interdependence between software
modules; a measure of how closely connected two routines or modules are; the
strength of the relationships between modules.®

Unmanaged complexity is seen by many as the primary reason organizations abandon
Scrum under delivery pressure. Make the failure mode explicit so leaders recognize
themselves in it.

Putting the ‘Core Practices’ into Practice

It is easy to read these ten ideas as so obvious and so generally accepted that they have
become a kind of “motherhood and apple pie” that everyone agrees with, but in doing so,
something important is missed. Most of today’s software development isn’t practiced
this way, but most great software development is. One would expect this kind of result
from a genuine “engineering” approach. In other disciplines, ‘Engineering’ is the stuff
that works!.

Controlling the Variables with Small Steps

One should focus on things that can be understood and controlled, and on how work
might be organized to achieve desired outcomes more deliberately, right from the start.
Guidelines are needed to help people do this before they have learned enough to fully
understand solutions to issues not yet well understood. People need a way of working
that allows them to continuously grow their understanding so they can adapt the work.
Grow understanding and adapt solutions to match it, relying on knowledge and learning
rather than wishful thinking about desired outcomes.

If engineers get this right, they can use this approach to explore the details of under-

2Wikipedia (2023) ‘Modularity’. Wikipedia. Available at: https://en.wikipedia.org/wiki/Modularity
(Accessed: 23 November 2025).

3wikipedia (2023) ‘Cohesion (computer science)’. Wikipedia. Available at: https://en.wikipedia.org/wik
i/Cohesion_(computer science) (Accessed: 23 November 2025).

4Wikipedia (2023) ‘Separation of concerns’. Wikipedia. Available at: https://en.wikipedia.org/wiki/Sepa
ration_of concerns (Accessed: 23 November 2025).

SWikipedia (2023) ‘Abstraction (computer science)’. Wikipedia. Available at: https://en.wikipedia.org
/wiki/Abstraction_(computer_science) (Accessed: 23 November 2025).

®Wikipedia (2023) ‘Coupling (computer programming)’. Wikipedia. Available at: https://en.wikipedia.o
rg/wiki/Coupling_(computer_programming) (Accessed: 23 November 2025).

https://en.wikipedia.org/wiki/Modularity
https://en.wikipedia.org/wiki/Cohesion_(computer_science)
https://en.wikipedia.org/wiki/Cohesion_(computer_science)
https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Coupling_(computer_programming)
https://en.wikipedia.org/wiki/Coupling_(computer_programming)

stood areas, moving them closer to desired outcomes with a lower risk of failure, while
deferring other aspects of the system until they are ready to learn more about them.

Progress via Incremental Change

Treating learning as the core of discipline shifts the focus from relying on arbitrary
predictions of the future, which are inherently wrong or at least imprecise, to a more
deliberate, exploratory approach that defines how to make useful, dependable, incre-
mental progress.

Some people trade off an illusion of precision in predicting the future, “We will deliver
features X, y, and z by Q2 next year”, for optimizing to work more efficiently to achieve
great results more quickly.

Adopting a More Rational Approach

To adopt a stronger engineering-led approach means being grounded in rationality
and reality. Let’s be clear: trying to fix time, budget, and scope is irrational; it won’t
work, and it provides a very poor basis for planning.

When a specific delivery date matters, a generally reliable approach—where circum-
stances allow—is to keep the software continuously releasable. If advance communica-
tion is necessary, it can be helpful to remain deliberately flexible about the exact content
of the release. At the time of writing, Apple exemplified this approach by avoiding de-
tailed pre-announcements whenever possible.

To deliver a fixed set of features, engineers should again work to ensure the system is
always releasable, but remain vague about when to release it. Engineers can announce
new features once they are in production and ready for release. Once again, some of
the most successful companies in the world work to that model.

These strategies are more effective at achieving realistic goals than crossing your fingers
and hoping for luck this time while attempting to fix both time and scope.

Engineering Constraints - Guardrails to achieve better results

The idea behind this list of ten practices is not to serve as gentle reminders of ideas we
have all heard before, but to recommend them as tools to actively steer decision-making.
If engineers consistently prioritize these factors in everything they do, they will achieve
better overall results.

This is not a model where people switch off their thinking and mechanically follow a set
of steps. These are practices to adopt and apply intelligently. By default, people often
choose options that maximize opportunities to learn, the ability to handle the complexity
of the systems built, and the problems they are designed to address.

Maximizing feedback creates more opportunities to learn. If all feedback indicates “all
is well”, engineers can be more confident in the changes, make progress with greater
certainty, faster, and with less stress.

Optimizing working practices, technology choices, and designs to deliver fast, high-
quality feedback means engineers will necessarily need to make progress in smaller
steps.

Smaller steps are safer, easier to test, easier to revert if something goes wrong, and make
it easier to identify the cause of any failure and understand how to correct it.

People will continue to optimize their work to gather clear, definitive feedback multiple
times per day. At a minimum, engineers should assess the software’s releasability at
least once per day.

The ability to achieve this forces people to adopt other good behaviors and practices.

If engineers need fast, definitive feedback, they must verify that each small change is
safe and sound, so they adopt the discipline of continuously verifying the releasability
of the systems. But also, if they are going to make progress in this series of many small
steps, and do that effectively at the lowest long-term costs (efficiently), they also need
to be able to take those small steps easily and with minimum overhead.

Engineers can’t afford lengthy, messy bureaucracy; they need validation to be fast, re-
liable, and comprehensive. This leads people to adopt high levels of automation and to
rely on it to determine the correctness and releasability of their systems.

Automation can be complicated, but when done well, it reduces complexity. Many or-
ganizations have attempted to automate builds, tests, and deployments, only to struggle
to do so effectively. Taking an engineering perspective helps people to do a better job of
this. If engineers want the automated tests to be fast and effective, they need to actively
control variables using version control, not just for source code but for every change
to production.

We adopt techniques such as Infrastructure as Code and policies such as All Change
to Production is Made via Version Control.

Suppose engineers want small changes to be safe and good. In that case, they need it
to be easy to determine safety and goodness, and for that, they need Easily Testable
Code that has a significant impact on design choices, because designs that are easy to
test also demand code that effectively Handles Complexity.

By intentionally aiming for code and designs that are easier to test, engineers signifi-
cantly improve their ability to handle complexity consistently and sustainably. Writing
tests before writing the code is an important aspect of this approach, but it does not
fully capture its purpose. Test-Driven Development (TDD)—often more accurately
described as Test-Driven Design—uses tests as a design tool. By applying early pres-
sure to design decisions, TDD encourages simpler structures, clearer responsibilities,
and better separation of concerns, thereby improving testability and increasing overall
design quality.

The dependencies and interactions among the ten principles are more complex than
this description suggests; it represents only one possible route through them, one chain
of rational reasoning. Starting with Fast Feedback and Small Steps is a particularly

effective way to frame the discussion, but the same case for a rational engineering ap-
proach could equally be made by beginning with Modularity, Working Experimentally,
or Managing Coupling, and arriving at the same conclusions.

All of these practices are very closely related to one another. This is a collection of
deeply related fundamentals for discipline that, if used as a “North Star for decision
making”, will lead people to better, more effective outcomes. In this case, see the North
Star as lighting the path rather than the destination.

Think for a moment about these two collections of ideas, imagine two software products,
similar to a product that you are working on now. Now imagine a version of that product
where there is:

Now,

No Iteration - getting everything right the first time

No Feedback - making perfect predictions of what the users will need and what
will work to deliver that to them

No Incrementalism - building everything in one step, and crossing our fingers
that everything will work in the end. I imagine that there will be a fairly lengthy
‘integration period’ to try everything out

No Experimentation - Al of the assumptions, guesses, technology choices, and
design decisions were perfect, untried, and correct the first time at the beginning

of the effort.

No Emergent Learning - the guesses of what the users wanted, how hackers
would attack the system, and how the world changes in the future were all perfect
too, so there is never a need to change anything. It’s about ‘keeping promises.’

imagine a second product we have described here.

. Iterative: Engineers working in small iterative steps, always ensuring that there

is a working, releasable product, even after minor changes.

. Continuous Learning: We continuously gather feedback and learn from it, and

. Incremental - always meeting the Definition of Output Done: build up the

systems incrementally, small, verified, change, by small, verified, change.

. Controlled Experimentation: This allows people to actively test their ideas;

as they become more accustomed to it, they gain greater control and begin
treating every change as a small, controlled experiment. One crucial practical
engineering outcome of these small, controlled experiments is the creation of
dependable, automated tests, a test harness.

. Emergent Learning: Engineers become so used to working in small steps that

they can handle any change - even changes that come from what the system
“teaches” us in production and from user feedback. And that leads to an impor-

tant lesson: it’s better to change your plan than to stick to a promise that turned
out to be a bad idea.

Which product would you prefer to work on? Which do you think is most likely to be
a success? Which do you think is likely to deliver value most quickly and efficiently?

Now imagine another two products, in the first, engineers ignore all the advice about
how to manage complexity, so:

No Modularity - A/l the code is in one big, messy function.

No Cohesion - global variables everywhere and a mish-mash of code doing
different jobs jumbled together.

No Separation of Concerns - Code to calculate tax, mixed in with code to paint
buttons blue, alongside code to store data in the cloud. Change one, and you
inevitably change them all.

No Abstraction - No obvious organizing principles that help you to answer the
question ‘where should I implement this change?’

Coupling is Unmanaged - Which usually means ‘coupling is high’, so engineers
can 't change code in one place without forcing change elsewhere, maybe every-
where else.

This description is so common that we have a name for it: we call systems that look
like this a Big Ball of Mud. Now imagine the opposite: the system is:...

1.

Modular - 4 system divided up into small, discrete parts, each of which has a
clear demarcation at its boundary, an “inside” and an “outside”, so that it can
keep secrets from interactions from “outside”.

Cohesive - All components “inside” are related to the job they perform, and
everything they need to do their job is present.

Has a strong Separation of Concerns - Each of these pieces is focused on doing
one thing and doing it well.

Using Abstraction to simplify conversations between parts - Interactions from
the “outside” via these clearly defined lines of demarcation that represent
contracts with the outside world hide, or at least obscure, the internal workings
of these parts.

Manages Coupling with a general preference for looser coupling. This means
that a change in one place or module is less likely to be disconnected from changes
in another, keeping these parts more decoupled. When a particular solution re-
quires tighter coupling, engineers can proceed with care and greater control.

Which of these two options would be preferable to work on, and which would have the

best chance of success, both now and in the long term? It is reasonable to assume that
the second product would be preferred, even without any knowledge of the technology
it uses, the nature of the problems it addresses, or other specific details.

Imagine how much value could be created if you combined the approaches from
both of the second product examples: Agile, grounded in sound software engineering
practices.

These ten ideas are, in general, better than the alternatives. If engineers consistently
prioritize these ten things and maximize them across every aspect of their work, they
will often achieve better results than alternatives.

Apply these ten ideas to how you...

* Organize Scrum Teams and collaborate with others
* Decompose problems or opportunities

* Plan product development

Architect systems

* Build systems

Verify releasability

* Sign-off

* Deploy and deliver software products to your users
* Do rework to attempt to attain desired outcomes

* or anything else...

For all of the above, always Optimize for Learning. And, always Optimize to Handle
Complexity.

If whatever engineers are doing does NOT build ‘Better Software Faster’ (ideally
in a direction of travel), it doesn’t count as ‘Engineering’ yet!

“Engineering” should work to improve the results; otherwise, the idea makes no real
sense.

If what “engineers” are doing is not yet “engineering”, then they should change some-
thing that will improve the ability to learn, enhance the handling of complexity, or both.
If engineers do any of those things, they will be closer to a workable solution. Keep
changing things so you continually improve at building Better Software Faster than
before (ideally in a coherent direction of travel); that is what “Inspect & Adapt” is really

10

for! Use both of the DORA metrics’, Stability & Throughput, to measure progress®.

Behaviours that Help to Drive the Change

Continuous Quality

th

+ Test-Driven Development’ and other test-first'? approaches.

+ Automated unit'!, Integration'?, and Acceptance Tests'>.

+ A Definition of Output Done that requires tested and working software capable
of addressing the Definition of Outcome Done.

These behaviors, when combined, support learning and the ability to manage complex-
ity. Test-Driven Development, gives fast iterative feedback on work, but also supplies
a forcing-function that guides design in better directions, encouraging the creation of
more modular, cohesive, better abstracted, more loosely-coupled systems with better
separation of concerns, because systems like that are more easily testable.

Working to establish, and vitally, maintain, high-quality and desired outcomes is fun-
damental to any successful approach. Delivering “rubbish” faster does not promote
adaptiveness. If engineers can reliably and repeatedly deliver a high-quality product,
they can confidently proceed in small, safe steps.

For this, engineers need fast, timely feedback on their work, and for that, they need
fast, repeatable test results so that small, safe (sometimes parallel) steps help build
confidence in their work and provide evidence of success.

Good automated testing is central to a sound engineering approach, providing a form
of “measurement” that determines the correctness of systems, and, in turn, leads to
better-designed systems'4.

Testable systems are better systems:

* More modular so that engineers can focus testing on smaller and simpler pieces.

"Harvey, N. (2025) ‘DORA’s software delivery metrics: the four keys’. DORA. Available at: https:
//dora.dev/guides/dora-metrics-four-keys/ (Accessed: 22 November 2025).

8Smith, S. (2016) Measuring Continuous Delivery. Leanpub. Available at: https:/leanpub.com/measur
ingcontinuousdelivery (Accessed: 22 November 2025).

9Farley, D. (2025) “TDD Tutorial’. CD.Training. Available at: https://courses.cd.training/courses/tdd-
tutorial (Accessed: 22 November 2025).

10Naked Agility with Martin Hinshelwood (no date) ‘Test First Development’. Available at: https:/nkda
gility.com/resources/test-first-development/ (Accessed: 23 November 2025).

Wikipedia (2023) “Unit testing’. Wikipedia. Available at: https://en.wikipedia.org/wiki/Unit_testing
(Accessed: 23 November 2025).

2Wikipedia (2023) ‘Integration testing’. Wikipedia. Available at: https:/en.wikipedia.org/wiki/Integrat
ion_testing (Accessed: 23 November 2025).

BFarley, D. (2025) ‘Acceptance Testing — Webinar’. CD.Training. Available at: https://courses.cd.train
ing/courses/acceptance-testing-webinar (Accessed: 22 November 2025).

4Farley, D. (2022) “TDD Is the Best Design Technique’. YouTube. Available at: https:/youtu.be/In4Wn
Xx-wrw (Accessed: 22 November 2025).

11

https://dora.dev/guides/dora-metrics-four-keys/
https://leanpub.com/measuringcontinuousdelivery
https://courses.cd.training/courses/tdd-tutorial
https://nkdagility.com/resources/test-first-development/
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Integration_testing
https://courses.cd.training/courses/acceptance-testing-webinar
https://youtu.be/ln4WnxX-wrw
https://dora.dev/guides/dora-metrics-four-keys/
https://dora.dev/guides/dora-metrics-four-keys/
https://leanpub.com/measuringcontinuousdelivery
https://leanpub.com/measuringcontinuousdelivery
https://courses.cd.training/courses/tdd-tutorial
https://courses.cd.training/courses/tdd-tutorial
https://nkdagility.com/resources/test-first-development/
https://nkdagility.com/resources/test-first-development/
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Integration_testing
https://en.wikipedia.org/wiki/Integration_testing
https://courses.cd.training/courses/acceptance-testing-webinar
https://courses.cd.training/courses/acceptance-testing-webinar
https://youtu.be/In4WnXx-wrw
https://youtu.be/In4WnXx-wrw

* More cohesive so that engineers can better control the variables within the scope
of a test, and so get more determinate results.

» Have better separation of concerns so engineers can test each system behavior
in isolation, making tests simpler and more focused on the problem at hand.

* Good tests test behavioural outcomes rather than internal implementation details.
So, engineers have clear lines of abstraction to separate system components,
allowing them to evaluate what they do without over-testing implementation
details in place. This means engineers can change the implementation without
invalidating the test.

» Good tests act as specifications of the intent, rather than “after the fact” assertions
that the code works. This often works best when engineers write the test before
the code, which helps ensure tests are easy to write. If the test is difficult to write,
or many tests are needed for a single piece of code, it indicates a poor design.
Product Developers can change the external design of the code and systems to
make them more testable, thereby increasing abstraction and reducing coupling,
almost as a side effect. It’s often helpful to treat TDD as test-driven design.

In summary, testable systems must be tested early and throughout the development pro-
cess, not after implementation is complete. Waiting for a system to be deemed complete
is missing the most significant value of testing in software development, which is to use
it as a form of measurement of the correctness of our work. In this, more engineering-
focused approach, automated testing is the equivalent of a carpenter using a ruler to
decide where to cut the wood. Our testing steers our design decisions, and this is how
we achieve better results.

Continuous Integration and Delivery

+ Integrating into the main branch!® frequently, at least once a day.
+ Automated build and deployment pipelines'®.

* Test environments that closely mirror production.

Continuous Integration Continuous Integration (CI) is not about tools; it is about a
better way of working!”. If you think about two or more copies of the same code being
worked on and modified in parallel, this represents a messy state to be in. Which one
is “correct”? Maybe even more important, what is the current truth of the system?

Bwikipedia (2023) Version control’. Wikipedia. Available at: https://en.wikipedia.org/wiki/Version_co
ntrol (Accessed: 23 November 2025).

16Farley, D. (2025) ‘3 Reasons Your CI/CD Pipeline Isn’t Working As It Should...”. YouTube. Available
at: https://youtu.be/m1oMj29P-Y (Accessed: 22 November 2025).

7Farley, D. (2025) “The 10 Commandments of Continuous Integration (CI)’. YouTube. Available at: https:
/lyoutu.be/NcUOoEk6z8Y (Accessed: 22 November 2025).

12

https://en.wikipedia.org/wiki/Version_control
https://youtu.be/m1oMj29P--Y
https://youtu.be/NcU0oEk6z8Y
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Version_control
https://youtu.be/m1oMj29P--Y
https://youtu.be/NcU0oEk6z8Y
https://youtu.be/NcU0oEk6z8Y

There is no way to definitively answer either question until engineers merge the two
copies and resolve any issues they identify. Only then can they tell that the changes work
together. This point of merging changes is how engineers establish a definitive shared
truth for the system. CI focuses on increasing the frequency with which changes are
merged'® to make such a valuation and gain insight into the correctness, or otherwise,
of the system.

The definition of CI is:

Continuous Integration is a software development practice where each member of a
team merges their changes into a codebase together with their colleagues’ changes
at least daily. Each of these integrations is verified by an automated build (including
test) to detect integration errors as quickly as possible. Teams find that this approach
reduces the risk of delivery delays, reduces the effort of integration, and enables prac-
tices that foster a healthy codebase for rapid enhancement with new features'®. —

Martin Fowler

In short, everyone working in a shared codebase commits their changes to a shared
version of the truth at least once per day, and that snapshot is evaluated for correctness.

After every commit, engineers definitively establish a new snapshot of the Truth - the
“Current State of the System”.

This serves as a synchronisation point, often eliminating ambiguity. Changes to this
“Current State” are made sequentially and under strict version control, so they always
represent a definitive, accurate, reproducible record of the system.

To qualify as “Continuous” Integration, everyone should Commit Changes to CI at
Least Once per Day. This is the minimum frequency of “commit” required to count
as “Continuous”.

Without this daily sharing, engineers risk losing visibility into the system’s current state
and, as a result, face many problems. CI is the closest engineers can get to a definitive,
clear view of the system’s state; anything else is, by definition, less certain and therefore
more risky. The DORA data show that teams that merge their changes at least daily
produce significantly higher-quality systems, more quickly, than teams that don’t. CI
is the route to Better Software Faster.

The DORA group at Google initiated the most scientifically credible research on soft-
ware development practices over many years, comprising many tens of thousands of
surveys. They use a peer-reviewed approach to sociology and strong statistical analy-
sis of the data, and have built an empirically grounded model that highlights patterns
and relationships between software development practices and better outcomes, based
on measures of:

« Stability - The quality of the systems that engineers build, and

8Farley, D. (2021) “Why CI Is Better Than Feature Branching’. YouTube. Available at: https://youtu.be/l
XQEilOSIOI (Accessed: 22 November 2025).

19Ukis, V. (2022) Establishing SRE Foundations. Available at: https://amzn.to/3MbcT5C (Accessed: 23
November 2025).

13

https://youtu.be/lXQEi1O5IOI
https://youtu.be/lXQEi1O5IOI
https://youtu.be/lXQEi1O5IOI
https://youtu.be/lXQEi1O5IOI
https://amzn.to/3MbcT5C

* Throughput - The rate at which engineers can deliver changes of that quality.

Read about the science behind this study, and some of its more important findings in
the book “Accelerate” by Nichole Forsgren, Jez Humble, and Gene Kim*°

The problem with CI is that it demands some trade-offs. If engineers are required
to commit changes at least daily to get sufficient feedback to enable people to work
quickly, safely, and efficiently. This changes how engineers think about the nature
of a “commit”. Even the word “commit” is fraught with misunderstanding. In CI,
to “commit a change” means that “we have committed to the idea that this change is
intended to work™; if engineers extend this to the definition of Continuous Delivery (CD
explained below), they are “committing to this change being ready for production”.

Unfortunately, in the terminology of the most popular version control system for engi-
neers, “Git”, “commit” has a very specific, but different, meaning: “we are keeping this
change, for now, but may decide not to share it with others later”. For the avoidance
of doubt, when engineers say “commit”,in the context of CI, in git-speak, they mean
commit, merge & push to a shared, definitive branch, the one place where CI operates.

This means engineers submit changes at least once per day that could end up in produc-
tion.

Many developers are used to working on features and only “committing” them once
they believe they are finished (aka “Feature Branching”). CI/CD assumes the software
is ready for production after every successful commit.

So that means either, that each feature functionality can be finished in less than a single
day, or that we work in ways that mean we are comfortable making changes that may
be released at any time, and are merged into the “Trunk” where CI runs to establish the
current “Truth of the system”, even if they don’t yet add up to a usable feature as they
are hidden behind a Feature Flag.

Keeping feature branches?! alive for a long time (days, even weeks) is a problem in
Continuous Integration because the code drifts away from the main branch and becomes
harder and riskier to merge back (often referred to as merge hell).

There are a variety of ways to achieve this CI way of working, including:
+ Dark Launching®? - We hide partially completed features by not providing a

user-visible route until they are ready for use.**

+ Branch by Abstraction®* - works by having people refactor existing code to
isolate the code we intend to change behind an abstraction, and develop a

20Forsgren, N., Humble, J. and Kim, G. (2018) Accelerate: The Science of Lean Software and DevOps —
Building and Scaling High Performing Technology Organizations. Portland, OR: IT Revolution.

21Farley, D. (2021) ‘“Why CI Is Better Than Feature Branching’. YouTube. Available at: https://youtu.be/l
XQEilOSIOI (Accessed: 22 November 2025).

22Eowler, M. (2020) ‘Dark Launching’. Martin Fowler. Available at: https://martinfowler.com/bliki/Dar
kLaunching.html (Accessed: 22 November 2025).

Z3Fowler, M. (2014) ‘Branch by Abstraction’. Martin Fowler. Available at: https://martinfowler.com/bli
ki/BranchByAbstraction.html (Accessed: 22 November 2025).

14

https://youtu.be/v4Ijkq6Myfc
https://martinfowler.com/bliki/DarkLaunching.html
https://martinfowler.com/bliki/BranchByAbstraction.html
https://youtu.be/lXQEi1O5IOI
https://youtu.be/lXQEi1O5IOI
https://martinfowler.com/bliki/DarkLaunching.html
https://martinfowler.com/bliki/DarkLaunching.html
https://martinfowler.com/bliki/BranchByAbstraction.html
https://martinfowler.com/bliki/BranchByAbstraction.html

replacement for the old code using the new abstraction.

+ Feature Flags®* - Software switches that allow people to select which version of
a feature users will interact with.

Fundamentally, the objective of working this way is to separate the acts of deploying
change into production from the decision to release new features to users. In CD termi-
nology...

The decision to deploy is separated from the decision to release.

In a Scrum Team, the Developers work to ensure that their system is always ready to
deploy, while the decision to release may be influenced by other, non-technical consid-
erations..

This separation can feel challenging and represents a meaningful compromise, but it
becomes necessary when enabling Continuous Integration for more complex features.
It allows Scrum Teams to integrate and deploy work safely and frequently without forc-
ing unfinished or experimental functionality onto users. Evidence from the DORA
research consistently shows that Continuous Integration leads to faster delivery and
higher-quality software than alternative approaches, making this trade-off well worth
adopting.

Continuous Delivery Continuous Delivery? is CI’s big brother; if CI is about con-
tinuously validating that the changes are working together, CD “ups the ante”:

Continuous Delivery: Keeping the software in a releasable state at all times.

The idea is to establish the system as a releasable thing from the outset: it is designed,
developed, packaged, and tested to production quality, so it can be released to produc-
tion without further work. We then maintain it in that state for the rest of its life.

To do that, we need to version-control and automate everything we can: functional
testing, unit testing, performance testing, security testing, configuration management,
deployment, data migration, regulatory compliance, etc.

This is all described in much more detail in my book “Continuous Delivery’’?®

The goal is to automate every check that determines whether the system is releasable -
build, tests, security checks, quality rules, and deployment steps.

We bundle those automated checks into a Deployment Pipeline?’. It’s not just a build
script; it’s an end-to-end process that asserts whether, or not, a change is safe to release.

24Fowler, M. (2010) ‘Feature Flag’. Martin Fowler. Available at: https://martinfowler.com/bliki/Feature
Flag.html (Accessed: 22 November 2025).

23CD Training (no date) Continuous Delivery Fundamentals. Available at: https:/courses.cd.training/co
urses/cd-fundamentals (Accessed: 22 November 2025).

26Humble, J. and Farley, D. (2010) Continuous Delivery: Reliable Software Releases Through Build, Test,
and Deployment Automation. Addison-Wesley Professional. Available at: https://amzn.to/2WxRYmx
(Accessed: 23 November 2025).

2TFarley, D. (2020) Continuous Delivery Pipelines: How to Build Better Software Faster. Leanpub. Avail-
able at: https:/leanpub.com/cd-pipelines (Accessed: 22 November 2025).

15

https://martinfowler.com/bliki/FeatureFlag.html
https://courses.cd.training/courses/cd-fundamentals
https://amzn.to/2WxRYmx
https://youtu.be/eoaDr5PpT2c
https://martinfowler.com/bliki/FeatureFlag.html
https://martinfowler.com/bliki/FeatureFlag.html
https://courses.cd.training/courses/cd-fundamentals
https://courses.cd.training/courses/cd-fundamentals
https://amzn.to/2WxRYmx
https://leanpub.com/cd-pipelines

A “real” Deployment Pipeline should:
* be the single source of truth for “can we release?”, and
* be the only path to production (no manual side routes).

So a deployment pipeline begins with CI and ends in production. It is best thought of
as a falsification mechanism rather than a mechanism for proving correctness. This
is another of those useful “engineering ideas”, in that however many tests we have,
we can never be sure that we haven’t missed something, so we can never prove the
correctness of the system, but if one test fails, we know definitively that the system
isn’t good enough, so a key idea of CD is...

If one test fails, we reject the change!

In this automated world, test reliability is critical, so we need to do a good job of auto-
mated testing. Here are several resources that explore this topic in more detail:

“Continuous Delivery Pipelines”?® - Book by Dave Farley

“Where to Start with Automated Testing”?° - YouTube video “5 Reasons your Auto-
mated Tests Fail”* - YouTube video “The Ultimate Guide to BDD***! - YouTube video
“TDD Tutorial*? - Free Tutorial “Acceptance Testing”* - Webinar recording

Continuous Deployment Continuous Deployment - Push change into production
on an automated basis after every successful change

If one is providing public web services or other software-as-a-service, then automating
the decision to release and practicing “Continuous Deployment” is what operational
excellence looks like. In this model, if the Deployment Pipeline says “All looks good,”
the change is automatically pushed into production. Scrum Teams that work this way
will update their production systems multiple times per day, sometimes every couple of
seconds.

Releasing frequently is generally less risky than releasing infrequently. There are
many reasons for this, but at its simplest, consider this. If each change is small, it will
also be inherently simpler. That means there are fewer hiding places for mistakes. If
each change is small, it can be tested more easily, and even if it is wrong, it can be
reverted more easily.

The other significant advantage is that, if each change is small, the difference between
what was in production and what is released is also small, making the behavioural delta

28Farley, D. (2020) Continuous Delivery Pipelines: How to Build Better Software Faster. Leanpub. Avail-
able at: https://leanpub.com/cd-pipelines (Accessed: 22 November 2025).

2Farley, D. (2023) “TDD or BDD When It Comes to Automated Testing?’. YouTube. Available at: https:
/lyoutu.be/Z9fGG1k6P40 (Accessed: 22 November 2025).

30Farley, D. (2022) ‘5 Reasons Your Automated Tests Fail’. YouTube. Available at: https://youtu.be/vHB
zZHE4tJO (Accessed: 22 November 2025).

31Farley, D. (2022) ‘An Ultimate Guide to BDD’. YouTube, 14 December. Available at: https://youtu.be
/gXh0iUt4TXA (Accessed: 22 November 2025).

32Continuous Delivery Ltd. (no date) “TDD Tutorial’. Available at: https://courses.cd.training/courses/tdd-
tutorial (Accessed: 22 November 2025).

33 Continuous Delivery Ltd. (no date) ‘Dave Farley on Acceptance Testing— Webinar’. CD Training. Avail-
able at: https://courses.cd.training/courses/acceptance-testing-webinar (Accessed: 22 November 2025).

16

https://leanpub.com/cd-pipelines
https://youtu.be/Z9fGG1k6P40
https://youtu.be/vHBzZHE4tJ0
https://youtu.be/vHBzZHE4tJ0
https://youtu.be/gXh0iUt4TXA
https://courses.cd.training/courses/tdd-tutorial
https://courses.cd.training/courses/acceptance-testing-webinar
https://leanpub.com/cd-pipelines
https://youtu.be/Z9fGG1k6P40
https://youtu.be/Z9fGG1k6P40
https://youtu.be/vHBzZHE4tJ0
https://youtu.be/vHBzZHE4tJ0
https://youtu.be/gXh0iUt4TXA
https://youtu.be/gXh0iUt4TXA
https://courses.cd.training/courses/tdd-tutorial
https://courses.cd.training/courses/tdd-tutorial
https://courses.cd.training/courses/acceptance-testing-webinar

inherently lower risk. This is supported by data evaluating the impact of practices in-
tended to make software safer, as described in the book “Accelerate, The Science of
Lean Software and DevOps™** by Nichole Forsgren, Jez Humble & Gene Kim. They
found:

“That external approvals were negatively correlated with lead time, deployment fre-
quency, and restore time, and had no correlation with change fail rate. In short, ap-
proval by an external body (such as a manager or CAB (Change Advisory Board)) sim-
ply doesn 't work to increase the stability of production systems, measured by the time
to restore service and change failure rate. However, it certainly slows things down. It
is, in fact, worse than having no change approval process at all.”

Most orgs that adopt this model of working in a sequence of frequent, small, verified
changes use informal peer review, rather than the more formal, gatekeeper approach
common in more traditional development organizations.

Based on DORA’s survey data, this is significantly a stronger predictor of high scores
in Stability & Throughput, that is, scores that mean that these Scrum Teams produce
Better Software, Faster. One of the more profound findings of the DORA research is
that “There is NO Trade-Off between Speed & Quality”. All of this is true, even for
Scrum Teams working on safety-critical systems. So, fast, high-quality feedback based
on work divided into small, verifiable steps is the highest-quality approach and perhaps
the most efficient found so far.

Design and Architecture for Adaptability

+ Context® - Learn to understand who will use your system and how, how do you
expect this to develop in the future.

+ Experiment®® - use the contextual understanding to identify places where more
information will help, and use small, controlled experiments to gather that
information.

+ Continuous refactoring’ to improve design.

+ Evolutionary architecture®® is guided by feedback.

34Forsgren, N., Humble, J. and Kim, G. (2018) Accelerate: The Science of Lean Software and DevOps —
Building and Scaling High Performing Technology Organizations. Portland, OR: IT Revolution.

33Farley, D. (2022) ‘What Software Architecture Should Look Like?’. YouTube, 30 March. Available at:
https://youtu.be/8GONv6jJsGO (Accessed: 22 November 2025).

36Farley, D. (2022) ‘What Software Architecture Should Look Like?’. YouTube, 30 March. Available at:
https://youtu.be/SGONv6jJsGO (Accessed: 22 November 2025).

37Continuous Delivery Ltd. (no date) ‘Dave Farley on How to Refactor Bad Legacy Code’. CD Training.
Available at: https://courses.cd.training/courses/refactoring-tutorial (Accessed: 22 November 2025).

3 Farley, D. (2022) ‘What Software Architecture Should Look Like?’. YouTube, 30 March. Available at:
https://youtu.be/EIMnHDSFaCw (Accessed: 22 November 2025).

17

https://amzn.to/2YYf5Z8
https://amzn.to/2YYf5Z8
https://youtu.be/wQYRl--58zM
https://youtu.be/wQYRl--58zM
https://courses.cd.training/courses/refactoring-tutorial
https://youtu.be/ElMnHDSFaCw
https://youtu.be/8GONv6jJsG0
https://youtu.be/8GONv6jJsG0
https://courses.cd.training/courses/refactoring-tutorial
https://youtu.be/ElMnHDSFaCw

+ Collaborative design techniques such as pair or ensemble programming?°.

If the goal is to maintain the software in an always-releasable state. Philosophically, the
best place to start is to assume that our ideas may always be wrong, and so we need to
be able to identify where they are wrong and correct them when we find better ways to
do things, better ideas for our product, or better answers to our questions. Realistically,
then, we can only achieve these things by always working to make our systems easy to
change. Part of that is being able to quickly spot when we make a mistake, so effective
deployment pipelines and robust automated testing are essential components of this
Strategy.

Another equally important factor affecting our ability to achieve this is the system’s
testability. Systems designed from the outset to be easily and reliably testable, which
encourages designs that effectively manage complexity, are also fundamentally easier
to change.

Making change easy is central to the CD approach. While there is no single “ideal
architecture for CD,” certain architectural approaches and choices can make it more
difficult.

Fundamentally, this engineering-driven approach to progress through many small, safe,

validated changes forces people to adopt a more evolutionary approach to software

design*’ & architecture*!.

Code Quality, Maintainability, and Cost

* Collective ownership of code and responsibility for quality.
* Peer review through pairing, mobbing, or structured code review.

* Clean code practices and automated analysis tools.

* “5 Things that Waste Time & Money on a Software Project’*?

The quality of a software system is defined by how easy it is to change!

This is important because it significantly reduces software development costs. There
is an assumption that producing high-quality software comes at a cost, in terms of both
time and money, but the data from DORA says the opposite. If you want high-quality,
you must move faster (in smaller steps); if you want to move fast, you must produce
work of higher quality.

FFarley, D. (2025) ‘The Pros & Cons of Pair Programming (With Examples)’. YouTube, 5 February.
Available at: https://youtu.be/foxMV76e7 E (Accessed: 22 November 2025).

“OFarley, D. (2022) ‘What Software Architecture Should Look Like?’. YouTube, 30 March. Available at:
https://youtu.be/8GONV6jIsGO (Accessed: 22 November 2025).

“IFarley, D. (2022) ‘What Software Architecture Should Look Like?’. YouTube, 30 March. Available at:
https://youtu.be/EIMnHDSFaCw (Accessed: 22 November 2025).

“Farley, D. (2022) ‘Improving Observability and Testing in Production’. YouTube, 3 August. Available
at: https://youtu.be/Nmu4URA7pSM (Accessed: 23 November 2025).

18

https://youtu.be/fbxMV76e7_E
https://youtu.be/8GONv6jJsG0
https://youtu.be/ElMnHDSFaCw
https://youtu.be/PlN2UWOnzW0
https://youtu.be/fbxMV76e7_E
https://youtu.be/8GONv6jJsG0
https://youtu.be/ElMnHDSFaCw
https://youtu.be/Nmu4URA7pSM

“Ease of Change” may seem like an odd definition of quality, but in reality, it underlies
everything else we value and leverages the unique strengths of software as a medium.
Ease of change is what makes software “soft”.

Of course, when we think about “quality” in software, there are many other factors
— often referred to as quality requirements, quality goals, or NFRs (non-functional
requirements)- that we might value, such as security, resilience, speed, usability, and
more. But what does it take to achieve any of these if the software is not easy to change?
The only alternative is to get whatever we are striving for, perfectly right the first time.

This is magical thinking, an illusion of unattainable perfection; engineering, of any
form, is more pragmatic than that. Engineering as a discipline assumes that we can,
and will, make mistakes, and good engineering helps people to fail safely or at least in
a controlled manner to minimize the impact of mistakes so that we can recover from
them more gracefully.

While we certainly want more from the system than ease of change, ease of change is
the route to achieving all those other things, and it is the most fundamental property of
any high-quality system.

This engineering approach is fundamentally based on making systems easier and safer
to change.

Operational Excellence

3

+ Monitoring, observability, and fast feedback from running systems* are often

referred to as telemetry.
 Techniques such as feature toggles, canary releases, or dark launches.

* Practices that build resilience, such as automated rollback or chaos testing.

Measuring Success through Observability To make change easier, we aim to estab-
lish and optimize feedback loops to help people continually build a shared understand-
ing and lay the foundations of a learning culture and process.

The most important lesson we need to learn if the aim is to build good software is what
users make of it. To do that, we need to find ways to close feedback loops all the way
through production.

Excellence in this looks like treating every release, even the small ones, as an exper-
iment. One of the complexities is that there are no standard measures available. The
appropriate thing to measure changes not just feature by feature, but actually outcome
by outcome.

Observability should influence product decision-making. Feedback and telemetry with-
out decision authority is noise, and many organisations stop there.

“Farley, D. (2022) ‘Improving Observability and Testing in Production’. YouTube, 3 August. Available
at: https://youtu.be/Nmu4URA7pSM (Accessed: 23 November 2025).

19

https://youtu.be/Nmu4URA7pSM
https://youtu.be/Nmu4URA7pSM

Here are a few different kinds of “experiments” that may be interesting to perform for
different kinds of features. ..

» “Up-time”, does this change make the software more resilient?
* Security, is the software more secure?

» A/B testing: Which options do users prefer?

* Does this change recruit more users?

* Does this change generate more available money?

...but there are also many, many, other measures that may matter, depending on the
feature we are creating.

Site Reliability Engineering (SRE) defines two useful concepts to support this: Ser-
vice Level Indicators (SLIs) and Service Level Objectives (SLOs). SLIs are metrics that
indicate how well people perform with a particular service. We recommend considering
how to measure success or failure, selecting the appropriate indicator for each feature,
and enabling tracking of that indicator during feature development. This will provide
people with strong observability, meaning greater insight into the system’s operation in
production at the level of the behaviours that really matter.

The next step to practicing SRE is to define SLOs, specific target measures based on the
SLI that indicate some measure of success. So, for example, if the SLI is “new users
added,” the SLO might be “500 users, ” and if the feature didn’t add 500 new users, it
is not deemed successful. Now one can use evidence like this to make decision-making
more rational, even adding SLOs to the acceptance criteria as outcome criteria for a
feature, e.g., “This feature is done when we recruit 500 new users.”

SLOs should be owned by the Product Owner and connected to Product Goals, not
treated as engineering KPIs.

Read more about SRE in Vladyslav Ukis’ book “Establishing SRE Foundations™**

Continuous Releasability The working definition of Continuous Delivery is that the
software is kept in an always releasable state. This is an important, generic measure of
success and is more fundamental to the practice than merely frequent releases.

Frequent releases are a very good idea and simplify many things, but they are also
more contingent on the business context, the nature of the software being built, and
other factors. The advice is to release as often as the external context allows.

4UKkis, V. (2022) Establishing SRE Foundations. Available at: https://amzn.to/3MbcT5C (Accessed: 23
November 2025).

20

https://amzn.to/3MbcT5C
https://amzn.to/3MbcT5C

Frequent release is a forcing function; one can’t achieve it without doing a good job in
all of the things described here. By increasing release frequency, one is forced to address
development process deficits largely through greater and more effective automation.

The mistake, though, is to assume that “frequent release” is the real goal; it is not. The
real goal is Building Better Software Faster. Frequent release is a technique to help
people achieve that. The enabling, more fundamental, step to both of these ideas, the
practical target that helps people to end up “building better software faster”, is:

Work so the software is ALWAYS in a releasable state!

Conclusion

This document is an overdue integration with the Scrum Guide Expansion Pack, as
engineering practices are expressed in the ‘Definition of Output Done’ and they:

+ Enable each Sprint to produce a usable, potentially releasable Increment.

* Strengthen Scrum’s pillars: Transparency (quality visible), Inspection (rapid
feedback), and Adaptation (safe change).

+ Reinforce the Scrum Values: Commitment to quality, Focus on working software,
Openness about problems, Respect for users and Product Developers, Courage
to improve practices.

These practices are well aligned with the core philosophies that underpin Scrum and
strongly reinforce its effectiveness. Organizations that claim to ‘do Scrum’ without
enabling these practices for engineering-oriented ‘Scrum Teams’ are running timeboxed
project management under the guise of agile language, not the essence of Scrum.

Scrum Teams are responsible for choosing and applying engineering practices by defin-
ing and fulfilling an appropriate Definition of Done for their domain. It is inherent to
Scrum and adaptive practices that improvement is ongoing. The engineering principles
described here are the most evidenced version of what really works in practice in a very
wide variety of different organizations, building different kinds of software from safety
critical systems, through to high performance finance systems, global scale internet sys-
tems, banks, space craft, embedded systems, cars, military systems and in large scale
enterprises, startups, legacy systems, and Scrum Teams building AAA Games.

Scrum Teams have successfully applied these techniques across all types of software
and companies. These ideas are generic and work effectively wherever they are applied.
If followed, they can help ensure success; while nothing guarantees results, one can be
more confident that better outcomes will be achieved than if one does not do these
things. After all, that’s what “engineering” is really for!

References

21

	Purpose
	The Case for “Engineering”
	Principles
	Enabling Adaptiveness through Technical Practices

	Core Practices
	Putting the ‘Core Practices’ into Practice
	Controlling the Variables with Small Steps
	Progress via Incremental Change
	Adopting a More Rational Approach
	Engineering Constraints - Guardrails to achieve better results

	Behaviours that Help to Drive the Change
	Continuous Quality
	Continuous Integration and Delivery
	Design and Architecture for Adaptability
	Code Quality, Maintainability, and Cost
	Operational Excellence

	Conclusion
	References

